Felles nordisk læringspakke i naturvitenskap for barnehagen

Merete Økland Sortland¹, Haukur Arason², Karen Bollingberg³, Birgitte Damgaard³, Thorleif Frøkjær³, Jóna Rún Gísladóttir⁴, Laila Gustavsson⁵, Astrid Wallem Hagen⁶, Heidi Harju-Luukkainen⁷, Kari Holter⁸,⁹, Jacob Jensen¹⁰, Sigve Ladstein¹¹, Guri Langholm⁸,⁹, Kristín Norðdahl², Gunlög Persson¹², Christoffer Salmen¹², Eva Staffans¹³, Susanne Thulin⁵, Tarja Irene Tikkanen¹⁴ og Pernille Hummelgaard Tonnesen¹⁵

¹Høgskolen Stord/Haugesund, Norge, ²University of Iceland, Island, ³University College Capital UCC, Danmark, ⁴Leikskólinn Huluberg, Island, ⁵Högskolan Kristianstad, Sverige, ⁶Bratveit natur og kulturbarnehage, Norge, ⁷University of Helsingfors, Finland, ⁸Høgskolen i Oslo og Akershus, Norge, ⁹Naturfagsenteret, Norge, ¹⁰Tårnby Naturskole, Danmark, ¹¹NLA Høgskolen, Norge, ¹²Önnegårdens förskola, Sverige, ¹³Åbo Akademi, Finland, ¹⁴Universitetet i Stavanger, Norge og ¹⁵Børnehuset Gartneriet, Danmark

Foto: Pernille Hummelgaard Tonnesen
Felles nordisk læringspakke er finansiert av Nordplus (50%) og arbeidsgiverne til deltagerne (50%).
Innholdsliste

<table>
<thead>
<tr>
<th>Kapittel</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innholdsliste</td>
<td>3</td>
</tr>
<tr>
<td>Introduktion</td>
<td>5</td>
</tr>
<tr>
<td>De døde hjorte</td>
<td>6</td>
</tr>
<tr>
<td>Inledning</td>
<td>6</td>
</tr>
<tr>
<td>Naturvidenskabelig indhold</td>
<td>6</td>
</tr>
<tr>
<td>Elektrisitet</td>
<td>10</td>
</tr>
<tr>
<td>Innledning</td>
<td>10</td>
</tr>
<tr>
<td>Elektriske ladete gjenstander</td>
<td>10</td>
</tr>
<tr>
<td>Elektrisk kraft</td>
<td>11</td>
</tr>
<tr>
<td>Prosjektets organisasjon og analyse bygget på Natgreps prinsipper</td>
<td>11</td>
</tr>
<tr>
<td>Fåglar</td>
<td>13</td>
</tr>
<tr>
<td>Inledning</td>
<td>13</td>
</tr>
<tr>
<td>Naturvetenskapligt innehåll</td>
<td>13</td>
</tr>
<tr>
<td>Tema: Fåglar</td>
<td>14</td>
</tr>
<tr>
<td>Rörelse och Friktion</td>
<td>16</td>
</tr>
<tr>
<td>Inledning</td>
<td>16</td>
</tr>
<tr>
<td>Naturvetenskapligt innehåll</td>
<td>16</td>
</tr>
<tr>
<td>Tema: Rörelse</td>
<td>17</td>
</tr>
<tr>
<td>Insekter</td>
<td>19</td>
</tr>
<tr>
<td>Inledning</td>
<td>19</td>
</tr>
<tr>
<td>Naturvetenskapligt innehåll</td>
<td>19</td>
</tr>
<tr>
<td>Kuldeblanding</td>
<td>22</td>
</tr>
<tr>
<td>Innledning</td>
<td>22</td>
</tr>
<tr>
<td>Naturvitenskapelig innhold</td>
<td>22</td>
</tr>
<tr>
<td>Case: Kuldeblanding</td>
<td>23</td>
</tr>
<tr>
<td>Livet i fjæra</td>
<td>26</td>
</tr>
<tr>
<td>Innledning</td>
<td>26</td>
</tr>
<tr>
<td>Naturvitenskapelig bakgrunn</td>
<td>26</td>
</tr>
<tr>
<td>Organisering av prosjektet og analyse av prosjektet ut fra Natgrip-pedagogikk</td>
<td>27</td>
</tr>
<tr>
<td>Lys</td>
<td>30</td>
</tr>
<tr>
<td>Naturvitenskapelig innhold</td>
<td>30</td>
</tr>
<tr>
<td>Case 1. Skyggelek</td>
<td>31</td>
</tr>
<tr>
<td>Case 2. Fargelek med overhead</td>
<td>32</td>
</tr>
</tbody>
</table>
Sjunka och flyta ... 34
Inledning... 34
Naturvetenskapligt innehåll ... 34
Vandets bevägelse .. 37
Fakta och begreber om ”Vandets bevägelse” ... 37
Planlägning/indledning och kontext ... 37
CASE: Vandets bevägelse ... 38
Didaktiske refleksjoner ... 40
Introduktion

Syftet med detta material är att inspirera och stödja ett naturvetenskapligt lärande i barnträgården. Det har sin bakgrund i ett gemensamt nordiskt utvecklingsprojekt i naturvetenskap för barnträgårdsläرارutbildningen, vilket startade år 2011 (Læring av naturfagbegreper hos barnehagebarn: Nordisk studiemodul for førskolelærerutdanningen (NATGREP)). Projektet finansierades av Nordiska Ministerrådet (Nordplus) och våra arbetsgivare och syftet med projektet var att fokusera ett tvärvetenskapligt arbetssätt med naturvetenskap som innehåll. Målet var dessutom att bidra till en höjning av kvaliteten på barnträgårdar och barnträgårdsläرارutbildningar i de olika länderna. Danmark, Finland, Island, Norge och Sverige har representerats av lärare från högskolor samt av personal från olika barnträgårdar. Studenter var också involverade i utprovningen av materialet. Det gemensamma arbetet bestod av olika delar och genom gemensamma diskussioner utifrån befintlig forskning och utprovning i olika barnträgårdar skapades ett teoretiskt grundmaterial som stöd i arbetet med naturvetenskap i barnträgården (För en närmare beskrivning av principerna se Sortland et al. (in press)). Utifrån detta material genomförde studenter under sin praktik ett antal olika naturvetenskapliga projekt. Dessa analyserades och diskuterades i projektgruppen.

Tabell 1: Teoretisk grund för projektet

<table>
<thead>
<tr>
<th>Princip</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Barns perspektiv</td>
<td>Barnträgårdsläaren ska vara nyfiken och ta tillvara barns nyfikenhet</td>
</tr>
<tr>
<td>2. Barns medverkan</td>
<td>Barnets demokratiska rätt till att medverka i sitt eget lärande</td>
</tr>
<tr>
<td>3. Barnträgårdsläarens roll</td>
<td>Barnträgårdsläarens kunskap och förmåga att improvisera</td>
</tr>
<tr>
<td>4. Barns lärande</td>
<td>Barn lär i interaktion med barn och vuxna (med fokus på barns nyfikenhet)</td>
</tr>
<tr>
<td>5. Vardagsamtalet</td>
<td>Ger möjlighet till kommunikation och reflektion hos barnet</td>
</tr>
<tr>
<td>6. Den fysiska miljön</td>
<td>Den fysiska miljön formar barns lek och lärande</td>
</tr>
</tbody>
</table>

De døde hjorte

Indledning
Denne case udgør en del af et projekt, hvor 22 børnehavebørn i alderen 4-6 år og vi voksne over ca. 6 måneder arbejder med hjorte som omdrejningspunkt. Forløbet har sit udspring i børnenes interesse for hjorte, efter de har set spor af dem på ture i skoven. Men udvikler sig over tid, til også at være en undersøgelse af, organernes udseende og funktion, vildtregulering, fødekæder og endelig af, hvad der sker fysisk og sjæleligt, når mennesker og dyr dør. Projekters ”katalysator” har været børnenes nysgerrighed og spørgsmål, de enkelte aktiviteter og projektets varighed har således ikke været planlagte fra starten. Børnene har i projektforløbet blandt andet, taget del i brækning af hjort, taget hjerte, lunge og lever med hjem i institutionen for nærstudier, tilberedt og spist hjortekølle og fremstillet en stor vægavis om hjorte – børnene har tegnet og malet, udvalgt fotos fra vores ture, og sammen har vi skrevet tekster til disse.

Naturvidenskabeligt indhold
En hjort er et dyr, der tilhører familien af plantædende, drøvtyggende, parrettåede hovdyr. I Danmark har vi fire forskellige hjortearter: Kronhjort, Rådyr, Dådyr og Sikahjort. Rådyret er vores mindste hjortear (op til 70 cm i skulderhøjde) og kronhjorten de største (op til 150 cm i skulderhøjde og helt op til 150 kg).

Hjortene lever af planter. Man vil også ofte kunne se hjorte, der går og græsser på landmandens mark, hvor de spiser spirer og græs. Om vinteren, når føden er knap, lever dyrene af bark, smågrene, rødder og topskud af planterne. Hjortene har kun tænder i undermunden og må flå planterne i stykker. Derfor er det tydeligt, når det er en hjort, der har spist af træerne – så er sporene efter dem nemlig flossede afbid.

Hjort har samme tybe mave som kvæg. 1 er vommen, 2 er nemaven, 3 er bladmaven og 4 er bagmaven.

Afføring
føden videre via netmaven til bladmaven, hvor vandet fjernes. Bagmaven er næste trin, hvor proteinerne i
kosten nedbrydes. Videre behandling af føden er i tarmen og den ender til sidst som “hjortepiller”.

Hjorten har en meget god lugtesans, hørelse og syn, er typisk mest aktive i skumringen og er tillige meget
sky, så det kan være svært at få øje på dem. Til gengæld kan man sagtens finde spor efter dem på mark og i
skoven. Man kan se, hvor hjortene har gnavet af barken, grene og topskud, , men også hvor de ofte
går. Det viser sig som små fladtrampede stier i vegetationen/græsset. Ligeledes vil man kunne se de lyse
grene, hvor hannerne fejer deres gevir – både som markering af territorium og for at fjerne den kløende bast.

Spor efter hannens gevir

<table>
<thead>
<tr>
<th>Pæd. principper: Det fysiske miljø former barnets leg og læring.</th>
<th>Praksisbeskrivelse/eksempel</th>
<th>Dokumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ved at tage til Dyrehaven, hvor vi kan se hjorte, giver vi børnene mulighed for nye oplevelser, erkendelser og læring: Det uventede møde med de døde hjorte giver mulighed for samtaler om nye begreber som f.eks. vildtpleje, organernes funktion og fødekæden. Tilbage i institutionen understøtter materialer som mennesketorsoen, tegnematerialer, samt brugen af digitale medier, børnenes videre bearbejdning af oplevelser fra turen. Turen inspirer til nye lege hjemme på legepladsen, hvor børnene leger hjorte og pinde bruges som gevir.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pædagogens kundskab og evne til at improvisere.

De voksne har sat rammerne for turen – at give børnene mulighed for at se hjørte - men har ellers ikke et stramt “design” for turen. Derfor gribes de også det naturvidenskabelige NU og vælger at bruge megen tid på det, børnene bliver optaget af: De døde hjorte.

Barnet lærer i interaktion mellem barn og voksne (med fokus på barnets nysgerrighed).

På eksemplet overfor introduceres børnene på baggrund af deres egne spørgsmål for begrebet Vildregulering.

Hverdagssamtalene må give mulighed for kommunikation og refleksion hos barnet.

I forløbet er der flere eksempler på samtaler mellem børn og voksne, som fører til ny viden eller korrektion af viden hos barnet. Et eksempel er barnet, der mener, at ræven bliver syg, hvis den spiser hjortens tarme og får forklaret at dette ikke er tilfældet.

Barnets medvirken – barnets demokratiske ret til at medvirke i egen læring.

<table>
<thead>
<tr>
<th>Versjon 26.08.16 Nordisk (dansk, svensk, norsk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnets medvirken – barnets demokratiske ret til at medvirke i egen læring.</td>
</tr>
</tbody>
</table>

Barnets perspektiv – pædagogen skal være nysgerrig og tage vare på barnets nysgerrighed.

<table>
<thead>
<tr>
<th>Barnets perspektiv – pædagogen skal være nysgerrig og tage vare på barnets nysgerrighed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med planlægningen af turen til Dyrehaven, imødekommer de voksne børnenes interesse/nysgerrighed for hjorte. På turen følger de voksne op på børnenes spørgsmål, enten ved selv at svare, lade de andre børn svare, eller ved at hjælpe barnet/børnene til selv at komme frem til et svar. Ved at give plads til børnernes spørgsmål og i det hele taget at være opmærksom på, hvad der optager børnene, dannes et meningsfuldt og spændende forløb, som børnene selv f.eks. i leg og tegning, følger op på da vi kommer hjem fra turen. Da børnene har et ønske om at gense de dødes hjortes indvolde, tager vi ugen efter atter til Dyrehaven –en mulighed for igen at tale om fødekæde.</td>
</tr>
</tbody>
</table>

Barnets medvirken – barnets demokratiske ret til at medvirke i egen læring.

Barnets perspektiv – pædagogen skal være nysgerrig og tage vare på barnets nysgerrighed.

Med planlægningen af turen til Dyrehaven, imødekommer de voksne børnenes interesse/nysgerrighed for hjorte. På turen følger de voksne op på børnenes spørgsmål, enten ved selv at svare, lade de andre børn svare, eller ved at hjælpe barnet/børnene til selv at komme frem til et svar. Ved at give plads til børnenes spørgsmål og i det hele taget at være opmærksom på, hvad der optager børnene, dannes et meningsfuldt og spændende forløb, som børnene selv f.eks. i leg og tegning, følger op på da vi kommer hjem fra turen. Da børnene har et ønske om at gense de dødes hjortes indvolde, tager vi ugen efter atter til Dyrehaven –en mulighed for igen at tale om fødekæde.
Elektrisitet

Innledning
Her beskrives to prosjekter som har til hensikt å styrke forståelsen av statisk elektrisitet hos barn i alderen 4 til 6 år, elektrisk ladede gjenstander og elektrisk kraft.

Utstyr
Små kuler av isopor i et CD-cover, små papirbiter, ballonger, boks av aluminium, kammer, tynne vaskesvamper, ullstoff, fleecestoff, bomullsstoff, silke, papirbiter, pleksiglass, plast, bomull, nylon, linjal, kam, penner, trekubber, m.m. for å lade med statisk elektrisitet.

Arbeidet sammen med barna:

Elektriske ladete gjenstander
Naturvitenskapelig bakgrunn
Gjenstander inneholder elektriske ladninger som kan være av to typer, enten plussladninger (+) eller minusladninger (-). De fleste gjenstandene vi møter i dagliglivet, har like mye av pluss- og minus ladninger og er derfor ikke ladet. Gjenstander som har mest av plussladninger, er positivt ladet, mens gjenstander som har mest av minusladninger, er negativt ladet. Hvis to ikke ladede gjenstander av forskjellig stoff (f.eks. ull og gummi) gnis samme tid, kan ladninger overføres mellom gjenstandene slik at de begge blir ladet, da blir den ene gjenstanden positivt ladet og den andre negativt ladet. Forsøk som dette virker best i tørr luft, f.eks. når det er klart vær og frost. Gjenstandenholder på ladningen i en periode, avhengig av omstendighetene, og utladning kan skje ved berøring. Elektrisk ladede gjenstander kan påvirke andre elektrisk ladede gjenstander og også ikke ladede gjenstand av bestemt materiale.

Aktiviteter:
Barna prøver å gjøre gjenstander elektriske ved å gni de mot hverandre eller mot eget hår. Sett de fast på veggen etterpå? Trekker de til seg andre materialer? Hvilket materiel er best til å elektrifisere andre gjenstander?
Elektrisk kraft
Naturvitenskapelig bakgrunn
Mellom elektrisk ladede gjenstand virker kretser. Tiltrekningskraft virker mellom to gjenstander der den ene er positivt ladet og den andre er negativt ladet. Frastøtningskraft virker mellom to gjenstander som har samme ladning. Elektrisk kraft kan virke mellom gjenstander uten at de berører hverandre.

Aktiviteter:
Her gjelder det å undersøke kretser som oppstår i mellom gjenstandene som er blitt elektriske i aktivitetene over. Er det tiltrekningskraft eller frastøtningskraft som virker? Observere om kretser virker på avstand eller bare ved berøring.

Prosjektets organisasjon og analyse bygget på Natgreps prinsipper

<table>
<thead>
<tr>
<th>Natgreps prinsipper</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Barn lærer i interaksjoner med barn og voksne (med fokus på barns nysgjerrighet)</td>
<td>Lærerne er active deltakere sammen med barna i arbeidet med materialet og i samtaler med dem. En veldig stor del av oppgavene er å oppmuntre barna til å uttrykke seg allsidig ved å fortelle, snakke sammen, tegne og bruke drama for å uttrykke sine tanker og opplevelse av oppgavene. Dette gjøres i starten på hver av oppgavene, mens det arbeides med materialet og i slutten på oppgavene.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5. Hverdagssamtalen – må gi mulighet for kommunikasjon og refleksjon hos barnet</td>
<td>I utviklingsarbeidet viste det seg at oppgaver som disse påvirker barnas oppmerksomhet og det dukker opp situasjoner der barna diskuterer idéer knyttet til oppgavene. Det er derfor viktig at barnehagelæreren og barna har felles erfaringer å diskutere og tenke over. I noen tilfeller er barna interessert i å fortelle foreldrene sine om oppgaven og vise dem de praktiske undersøkelsene.</td>
</tr>
<tr>
<td>6. Det fysiske miljø former barnas lek og læring</td>
<td>Dersom det er mulig er det ønskelig at materialet er tilgjengelig for barna i det daglige arbeidet slik at barna kan utføre sine undersøkelser når de er interesserte. Mens oppgaven pågikk viste det seg at barna var interessert i å gjenta de praktiske undersøkelsene om og om igjen. Det vil også dukke opp anledninger for læreren til å referere til erfaringer fra prosjektet.</td>
</tr>
<tr>
<td>Hva vi gjorde?</td>
<td>(Se beskrivelser overfor under aktiviteter)</td>
</tr>
</tbody>
</table>
Fåglar

Inledning

Syfte/Strävansmål: Barnen ska utveckla kunskap om vad som skiljer fåglar från andra djur.
Bakgrund: Barngruppen består av 12 barn i åldern 2-4 år. Hälften av barngruppen är flerspråkig. Barnen visar intresse för fåglar och i omgivningen finns flera arter. I grannskapet finns tuppar och hönor och dessa har aldrig tidigare benämnts som fåglar utan där har begreppen tupp och höna använts av personalen. Övriga flygande fåglar har benämnts fåglar, d v s en generell beteckning för samtliga arter.

Lärarna samlar alla barnen och visar bild på en fågelart ur olika perspektiv (bakifrån, framifrån o s v). Detta gjordes för att ta reda på barnens tidigare erfarenheter av fåglar. Därefter går lärare och barn ut i närområdet vid ett flertal tillfällen och tittar på fåglar. För att barnen ska få en möjlighet att beskåda en fågel på nära håll studeras tuppar, hönor då de inte flyger och ankar som er relativt stationära.

Naturvetenskapligt innehåll

Tema: Fåglar

Pedagogiska principer

| Barns perspektiv – pedagogen ska vara nyfiken och ta vara på barns nyfikenhet | Att ta reda på vad barnen redan vet om fåglar
Pedagogerna inleder samtal om fåglar
Använder kontrast för att öka barns möjlighet att urskilja | Alla barn hade tidigare erfarenheter av begreppet fåglar (utvecklingspedagogik)
Pedagogerna frågade hur det visste det?
Lång dialog med diskussion om vad som karakteriserar en fågel t.ex näbb, fjädrar, vingar och kan flyga
Kontrasterade med andra djur – ex antal ben på får och gris (variationsteorin) | Alla barn kunde inte alla begrepp när vi var klara men alla barnen kunde något av begreppen. |
|---|---|---|---|
| Barns delaktighet – barnets demokratiska rätt till att medverka i sitt eget lärande | Öppnar upp för samtal – inbjuder till dialog | Barnen visste inte att tupp, höna och ankor var fåglar. | Viktigt att beakta begreppen parallellt
Generell = Fågel Specifik = domherre, anka |
<p>| Pedagogens kunskap och förmåga att improvisera | Pedagogerna läser in sig på fågelkunskap, hämtar info från bl.a internet | Sökte riktiga begrepp för att karaktärisera en fågel. Klör t.ex är inte generellt men t.ex fjädrar. | En slutsats som pedagogerna drog är att det är viktigt att använda generella och specifika begrepp samtidigt i alla sammanhang |
| Barnen lär i interaktion mellan barn och vuxna (med fokus på barns nyfikenhet) | Vi planerade att inleda med hela gruppen tillsammans för att ge möjlighet att lyssna på varandra. | Äldre barn uppmuntrar varandra i dialogen och de yngre barnen får lyssna till olika begrepp. ”Smittar” – tysta barn uppmuntras att tala genom att interagera med mera språkliga | Barnen kompletterade varandras idéer efterhånd. Fler och fler barn kom till tals och använde olika begrepp |</p>
<table>
<thead>
<tr>
<th>Vardagssamtalen – ska ge möjlighet till kommunikation och reflektion hos barnet</th>
<th>Planerade att utnyttja vardagssammanhang och hela tiden tala om fåglar</th>
<th>Utnyttjade alla vardagssammanhang för att tala om fåglar och benämna med olika begrepp</th>
<th>Barnen uppmärksammade fåglar i olika situationer och påkallade då de vuxnas uppmärksamhet. Fågelbon uppmärksammades av barnen och ledde till att temat utvidgades till att också omfatta hur fåglar bor. Ett tema som också har ”smittat” av sig till vardagen hemma.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Möjligen skulle en uppspärrad fågel inledningsvis ha väckt större intresse hos barnen än vad bilderna gjorde. Det underlättade att det fanns tuppar, hönor och ankor i barnträgårdens närhet.</td>
</tr>
<tr>
<td>Den fysiska miljön formar barns lek och lärande</td>
<td>Laminerade lekvänliga bilder på fåglar som alltid ska ligga framme.</td>
<td>Barnen tittade ofta på bilderna. Utnyttjade den fysiska miljön genom att göra besök på Lantbruksgymnasiet där det fanns ankor och höns som stod stilla så barnen hann iaktta dem.</td>
<td></td>
</tr>
</tbody>
</table>
Rörelse och Friktion

Inledning

Syfte/Strävansmål: Barnen ska utveckla kunskap om sambandet mellan lutning och hastighet

Inledningsvis åker barnen och läraren frågar barnen hur det går att åka ner för de olika bänkarna. Lärarna uppmärksammar barnen på deras omedvetna val av kroppshållning i förhållande till lutning och hastighet (dvs barnen ligger ner och åker på bänkar med mer lutning medan de sitter upp och åker på bänkar med mindre lutning). Begrepp som används är lutning, hastighet, högt, lågt, snabbt, sakta, upp och ner.

Naturvetenskapligt innehåll

Upplevelsen att glida nerför en bänk som är fästad i en ribbstol är beroende av flera faktorer. De krafter som påverkar situationen är:

- Friktion mellan kropp och bänk
- Tyngdkraft
- Luftmotstånd – möte mellan kropp och luft när kroppen är i rörelse
- Normalkraft

När bänken lyfts (i sin ena ände) från golvet fästs vid ribbstolen får den en vinkel i förhållande till golvet. Ju högre upp bänken är fäst ju större blir påvekan från tyngdkraften och luftmotståndet.
Om glidfrictionen är på 0,4 kommer barnet vid en vinkel mellan golv och lutande plan på 22° att glida med konstant fart. Då vilofrietkionen är lite högre, gärna 0,5 får barnet hjälpa sig i gång med armarna för att kunna glida nedåt (Newton första lag).

Om vinkeln ändras till 40°, kommer barnet att accelerera när det glider nedför. Luftmotståndet blir då påtagligt eftersom det ökar när farten ökar. Detta märker barnet intuitivt och det lägger sig ner på magen och håller sig i bänken när det glider nedför (Newtons andra lag).

Tema: Rörelse

<table>
<thead>
<tr>
<th>Pedagogiska principer</th>
<th>Planerade</th>
<th>Genomförda</th>
<th>Utvärdering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedagogens kunskap och förmåga att improvisera</td>
<td>Utifrån en önskad aktivitet från barnen lottar läraren barnen till en naturvetenskaplig aktivitet med hastighet och lutning.</td>
<td>Lärarna ställer en bänk på golvet utan lutning för att skillnaden mot de bänkar som har en större lutning ska bli tydlig.</td>
<td>Läraren introducerar hastighet och lutning eftersom bänkarna är ett gynnsamt material utifrån barnens önskemål.</td>
</tr>
<tr>
<td>Barnen lär i interaktion mellan barn och vuxna (med fokus på barns nyfikenhet)</td>
<td>Lärarna planerar att genomföra aktiviteten i hela barngruppen för att barnen ska erfara varandras upplevelser.</td>
<td>Aktiviteten görs i hela gruppen med bänkar med olika lutning. Lärarna ställer utmanande frågor om hastighet och lutning, barnen har en dialog med både lärare och sina kompisar. Vid ett tillfälle fick barnen i Utifrån lärarnas utmanande frågor skiftade barnen till att använda korrekta naturvetenskapliga begrepp.</td>
<td>De öppna frågorna från lärarna skapar en</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Den fysiska miljön formar barns lek och lärande</td>
<td>Lärarna planerar att genomföra aktiviteten i gymnastiksalen.</td>
<td>Gymnastiksalen erbjuder ett rikligt material till denna aktivitet.</td>
<td>Det är positivt för barns lärande att ha tillgång till en gymnastiksal.</td>
</tr>
</tbody>
</table>
Insekter

Inledning

Syfte: Barnen skall få förståelse för vad som händer med insekter när det blir höst

Bakgrund: Barngruppen består av 8 barn i åldern 4-5 år. Barnen har tidigare arbetat med olika djur, men nu kommer fokus att bli på insekter och vad som sker med dem på hösten och vintern, eftersom barnen har konstaterat att insekterna inte syns då.

Material som behövs: något att samla materialet (tex. mossa, bark, sådant som barnen tror insekter kan finnas i), luppars och förstoringsglas.

Begrepp som kan vara i fokus: insekter (många olika arter), övervintrar och övrigt

Naturvetenskapligt innehåll

<table>
<thead>
<tr>
<th>Pedagogiska principer</th>
<th>Beskrivning av händelseförloppet</th>
<th>Dokumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barns delaktighet – barnets demokratiska rätt till att medverka till sitt eget lärande</td>
<td>Barnen var intresserade av insekter och många andra djur, men det som upptog det mesta av deras funderingar rörde sig kring var insekterna finns på hösten och vintern, för då är de ju inte framme.</td>
<td>Utgående från barnens intresse för vad som sker med insekterna under höst och vinter så ändrades fokus från att vara insekter allmänt till en studie i var insekter finns under hösten och vintern.</td>
</tr>
<tr>
<td>Pedagogens kunskap och förmåga att improvisera</td>
<td>Läraren har läst in sig på en del kring insekter: - vad är kännetecknande för en insekt - livsbetingelser - föda m.m. Viktigt att vara lyhörd för barnens funderingar och resonemang, fånga upp det som barnen relaterar till.</td>
<td>”En myra har bara 3 ben” hävdar ett barn som tittar i en tecknad bok. Visst är det ju så när man ser det från sidan, men viktigt att läraren uppfattar kommentarer och försöker att förklara och reda ut eventuella missförstånd.</td>
</tr>
<tr>
<td>Barn lär i interaktion mellan barn och vuxna</td>
<td>Läraren skulle inleda projektet för att senare fungera som en forskare tillsammans med barnen. Ibland tar läraren initiativet för att komma vidare och ibland så lyssnar läraren in och stödjer där det behövs. Öppna frågor för att barnen skall få fundera och komma med förslag.</td>
<td>”Det finns inga insekter i mossan, bara i trädet (barken)” ”Se, där är en grön!” ”Jag tror att det är en bärflis!” vilket följs av en massa fnissande.</td>
</tr>
</tbody>
</table>
Vardagssamtal – skall ge möjlighet till kommunikation och reflektion hos barnet

Viktigt att läraren utmanar barnen i tillrättelagda samtalssituationer, men att fånga diskussionen i tillfället ger även det väldigt mycket. Barnen sitter och kikar in i lådan för att se vad som sker och diskuterar och förklarar för varandra. Ibland behöver läraren fylla i eller korrigera det som barnen diskuterar.

"Se, se, se vad jag har hittat!" Visa barnet att jag ser och ställ frågor kring det barnet har hittat.
"Där är en skalbagge och en... fluga? " Diskutera dessa två och lyft fram de skillnader som man kan se för att barnen skall fästa uppmärksamhet på olikheter.

Den fysiska miljön formar barns lek och lärande

Eftersom "utemiljön" i detta fall flyttade inomhus, i form av bark och annat materia från skogen i en plastlåda, blev det enkelt för barnen att studera fenomenet när som helst. Barnen intresserade sig för allt som rörde sig i låda, inte enbart insekter. De samlade även spindlar som de hittade inomhus i lådan.

Eftersom utemiljön flyttades in, var det lättare att studera och insekternas (och andra) kom fram ur sin vila. "De har ju försvunnit!" En del insekter smet ur lådan via ventilationen. Några insekter samlades in tillbaka (även nya arter samlades in)...
Kuldeblanding

Innledning

Mål: Barna skal få leke med en blanding av salt og is og erfare at den kan bli veldig kald.
Bakgrunn: Barnehagelæreren starter samlingen med 4-6 åringer med figurer for å lage isterninger. Hun forteller at de skal lage is, og de snakker om hva det er og hva de trenger for å lage det. Barna gir innspill som: Vi må ha vann, det må være kaldt, bruke fryseboks m.m. Dette temaet har disse barna jobbet med før og de kommer med forslag til hva is er: Vann som har frosset til is fordi det har stått veldig kaldt.
Materialer som trengs: utstyr til å lage isbiter, tomme hermetikkbokser uten papir på, isbiter, grovsalt, termometer
Begreper som kan være i fokus: fryse/smelte, rim, is, vann, temperatur, kuldegrader, varmegrader (oppover og nedover), kaldere enn/varmere, termometer.
Skisse over forsøket: Tar isen i metallbokser; Måler temperaturen; Finner frem salt; Tar salt i boksen sammen med isen; Måler temperaturen igjen (den røde streken har gått lenger ned); Konstaterer at det skjer «merkelige ting» (se lenger ned).

Naturvitenskapelig innhold

<table>
<thead>
<tr>
<th>Forklaring av hvordan is smelter</th>
<th>Illustrasjon av is som smelter ved hjelp av drama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Når temperaturen stiger øker vibrasjonene til partiklene, og ved 0°C er de så kraftige at partiklene løsner fra strukturen, isen smelter.</td>
<td>Når hastigheten til vuggebevegelsen øker, vil barna nå et punkt der de ikke klarer å holde på hverandre. Det illustrerer smeltpunktet til isen.</td>
</tr>
</tbody>
</table>
Is smelter ved tilført varme. Den kan komme fra en varmekilde, f. eks. en kokeplate eller varmeeenergien fra omgivelsene (salt i is). Den tilførte energien gjør at partiklene vibrerer fortetere. Energi kan sammenlignes med mat (mat er kjemisk energi), vi må ha mat for å bevege oss over lang tid.

Vann- og saltpartiklene kan sammenlignes med magneter, der saltpartiklene er starkere magnetter enn det vann-partiklene er. Saltkrystaller er også annerledes enn vannkrystaller, de passer ikke sammen. Modell av saltkrystall:

Saltet kan illustreres med barn med vester som bare kan bruke en arm, men som likevel er sterke enn barna i nettverket som bruker begge armene. Isen og saltet passer ikke sammen, og isen smelter.

Når en blander is og salt i en tilnærmet lukket beholder f.eks. en hermetikkboks vil en observere at temperaturen synker, men at isen smelter. Dette betyr at de partiklene som løsner fra krystallen må skaffe seg mer energi for å kunne bevege seg raskere. Denne energien henter partiklene fra omgivelsene, som i dette tilfellet betyr fra det smeltede vannet inne i boksen. Når vannet taper energi blir det kaldere og temperaturen synker. En løsning med natriumklorid og is-vann kan nå en temperatur på ca. -21°C, mens saltet kalsiumklorid blandet med is kan nå en temperatur på ca. -55°C. Det samme skjer når en strør salt på isete veier, men her er systemet salt-is-vann åpent. Temperaturen synker midlertidig, men luften omkring strømmer til systemet og utjevner temperaturen. Temperaturen er derfor konstant på saltstrødde veier.

Case: Kuldeblanding

<table>
<thead>
<tr>
<th>Pedagogisk prinsipp</th>
<th>Beskrivelse/narrativ</th>
<th>Dokumentasjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnets perspektiv – pedagogen skal være nysgjerrig og ta vare på barnets nysgjerrighet. Det fysiske miljø former barnets lek og læring</td>
<td>Vi finner frem vann. På barnas forslag, siden det ikke er kaldt nok ute, blir vi enige om at isen må lages i fryseboksen. Etter at dette er blitt til is finner vi frem resten av utstyret. Vi velger å gjennomføre aktiviteten ute. Underveis i forsøket jobbet vi med begreper som fryse/smelte, rim, is, vann, temperatur, kuldegrader, varmegrader (oppover og nedover), kaldere enn/varmere enn m.m.</td>
<td></td>
</tr>
</tbody>
</table>
Barnets perspektiv - pedagogen skal være nysgjerrig og ta vare på barnets nysgjerrighet. Barns medvirkning.

Eksperimentet hadde et planlagt forløp, men det viktigste var likevel at dette skulle være lystbetont og drevet av barnas interesse. Vi la derfor vekt på å bruke god tid. Ungene brukte alle sanser: Kjente på, kikket på, smakte på salt og is, luktet på og målte, sammenlignet, studerte «den røde streken» som gikk opp og ned, konkluderte, forklarte for hverandre, begynnte å måle temperatur andre steder f.eks. i håndflaten for å sammenligne temperaturen der med temperaturen i isen osv. Vi lot oss fasinere av hva barna la merke til (se mer under punkt om hverdagssamtalen lenger ned).

Barnets medvirkning – barnets demokratiske rett til å medvirke i egen læring

Selv om forsøket denne gang var initert av voksne med et planlagt forløp ble barnas medvirkning ivaretatt gjennom f.eks. - De fikk selv være **aktive** i motsetning til en eventuell rolle som tilskuer (de fikk ta på/kjenne på/undersøke osv.)
- I forsøket vektla vi barns måte å lære på: Gjennom undersøkelse, egenaktivitet og bruk av alle sanser.
- Vi fulgte barnas initiativ (målte andre ting enn det vi hadde planlagt på forhånd) og hadde øyne og ører åpne for hva som engasjerte undervels

Hverdagssamtalen – må gi mulighet for kommunikasjon og refleksjon hos barnet

Barnet lærer i interaksjon mellom barn og voksne

Undervegs var det dialog barn-voksen/barn-barn +mye undring og gode forklaringer fra barnas side
- Saltet er ikke kaldt!
- Isen blir likevel kaldere når den får salt på seg.
- Det kommer rim på boksen fordi det er så kaldt det som er oppi/inni.
- Det blir så kaldt at det SVIR på hendene mine når jeg holder boksen med is og salt.
- Isen **smelter** til og med selv om saltet gjør det enda **kaldere** oppi... MERKELIG!
- Saltet gjør at isen blir til vann igjen.
- Streken på termometeret går opp igjen når jeg holder på tunnen – da er hendene mine er varmere enn isen!
- Rimet utpå boksen smelter når jeg tar på det fordi hånden min er varmere enn rimet.

Pedagogens kunnskap og evne til å improvisere

Utgangspunktet for eksperimentet var voksenstyrte: Et forsøk vi var oppfordret til å prøve ut med barn og som vi varspent på om ville «fenge» i alderen 4-6 år. Som vi har sett mange ganger før: Der voksne er medundersøkende og nysgjerrige, lar ikke barn seg be to ganger. For oss voksne er eksperimentet også fasinerende og det er lett å la seg fasinere av det «merkelige» som skjer underveis. Det er en fordel å være raus med saltet.
| Pedagogens kunnskap og evne til å improvisere Barns medvirkning. | I en annen barnehage så avsluttet de forsøket med å lage yoghurtis. «Deilig hjemmelaget is, med bittelitt saltsmak (Pga. hull i posen av ivrige barnehender som måtte røre og kjenne på hele tiden)». | ![Image](image.png) |
Livet i fjæra

Naturvitenskapelige mål

At barn blir kjent med organismer i fjæra.

Innledning

Prosjektet Livet i fjæra ble utført i barnehagen Hulduberg i Mosfellsbær, med barn i alderen 4 og 5 år. Barna kom ikke selv på prosjektidéen, men de var meget interessert i å vite mer om livet i fjæra. Første gangen var det lite liv å finne, men barna fikk en fin anledning til å være ute og opppleve naturen. Barna var mest interessert i søppel og tomme skjell. På den andre turen dro de til en strand der det var mer stein.

Naturvitenskapelig bakgrunn

Fjæra er et sted med stort biologisk mangfold, der kan man observere et stort utvalg av organismer som forskjellige planter, alger og dyr. På stranden er det spesialle organismer som har tilpasset seg å være vekselvis under vannoverflaten og på tørt land.

Biologisk mangfold forteller om variasjon blant alle slags organismer. Her menes ikke bare variasjon mellom artene, men begrepet er også brukt om mangfold innenfor arten og om variasjon i miljø og økosystem. Mangfold er gjerne brukt som en målestokk på økosystemer, og et stort mangfold er derfor en indikasjon på et sunt og stabilt økosystem. Mangfold innenfor arter er også viktig for artenes utvikling.

Ulike grupper av organismer finnes i fjæra. Den største forskjellen mellom disse organismeegruppene er planter og alger som kan produsere egne næringsstoffer i motsetning til dyr som bruker andre organismer som næring. Plantene kan deles opp i flere undergrupper (rekker) moser og alger (varierende om de er klassifisert som planter) og så karplanter (Traceheophyta), som er sneller, jamnesleken, bregner, naknfrøede planter og blomsterplanter (dekkkfrøede panter). De plantene som alltid vekker størst oppmerksomhet, er blomsterplantene, som deles opp i rot, stengel, blad og blomst. Blomsterplantene vokser lengst oppe i fjæra, i realiteten ofte ovenfor fjærekanten, mens i selve fjæra er det alger som er de mest fremstredende organismin som selv lager sin egen næring. Alger deles opp etter farge som grønnalger, brunalger og rødalger. Ofte snakker vi også om tang og tare, og vi kan se forskjell på dem etter hvordan de fester seg til underlaget/bunnen. Tang fester seg til underlaget med et flak som ligner på en sugekopp, mens tare, som vanligvis er betraktelig større, fester seg med et organ som kalles hefterot og ligner på roten til blomsterplantene. Hverken flaket eller hefteroten har rollen til planteroten, å suge vann inn i planten.

Dyrene er blitt delt opp i over 30 rekker, og i fjæra kan man finne er f.eks. mosdyr, svamper, nesledyr (f.eks. koraller, maneter, sjøanemoner), leddormer (f.eks. havbørsteormer), bløtdyr (f.eks. snegler og muslinger), pigghuder (f.eks. sjøstjerner, sjøpølser, sjøpiggsvin og slangestjerner) og leddy (f.eks. krepsdyr, insekter og ederkoppdyr) og så selvfølgelig virveldyr (f.eks. fugler, pattedyr og fisker).
Organisering av prosjektet og analyse av prosjektet ut fra Natgrep-pedagogikken

<table>
<thead>
<tr>
<th>Hva gjorde vi?</th>
<th>I prosjektet dro barna på to turer til fjæra, organismer ble observert og samlet. Tilbake i barnehagen ble organismene sett nærmere på og diskutert.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Barns perspektiv – førskolelæreren må være nysgjerrig i og ta vare på barns nysgjerrighet</td>
<td>Før turen til fjæra ble barna spurt om hva som fantes i der. Barna var enige i at i fjæra fantes skjell, steiner, sand og sjøvann, og at fiskene bodde i havet. De ble også spurt om det var noe levende i fjæra, og de svarte at kreps og små krypdyr var levende. Det var tydelig at de ikke mente at skjell var blant organismene.</td>
</tr>
<tr>
<td>2 Barns medvirkning – barnets demokratisk rett til å medvirke til egen læring</td>
<td>Selv om prosjektet ble utarbeidet på initiativ fra barnehagelæreren, fikk barna velge aktiviteter, og det var barnas interesser som styrt hvordan prosjektet utviklet seg. Et eksempel på dette er at barna bestemte selv hva de gjorde i fjæra, og at de fikk lov til å samle det de hadde lyst til å ta det med tilbake til barnehagen. Barna lagde også en historie om en kreps som de fant i fjæra, og historien skulle handle om hvorfor den døde.</td>
</tr>
</tbody>
</table>
3. Barnehagelærerens kunnskap og evne til å improvisere

Barnehagelæreren vekket barnas interesse for livet i fjæra. Organismene i fjæra er ikke alltid lett å se, og læreren hjalp barna med å lete etter organismer som skjuler seg i fjæra, f.eks. under steiner og tang.

Både i fjæra og senere tilbake i barnehagen ble barna oppmunstret til å se nærmere på organismene og tenke over hva som lignet hverandre utseendemessig og hvilke som ikke lignet. Barna oppdaget at det fantes forskjellige arter av alger, og ved å sammenligne kunne de se at fargene var forskjellige, og at noen hadde bobler.

Lærerens forberedelse kan være tidkrevende, men er viktig og jo oftere læreren drar på tur i fjæra, desto tryggere blir hun i situasjonen.

4. Barn lærer i interaksjoner med barn og voksne (med fokus på barns nysgjerrighet)

Det ble undersøkt hva barna mente var bemerkelsesverdig av det som fantes i fjæra, og det ble laget papirremser der navn av det barna hadde lagt merke til, ble skrevet. Deretter tok man foto av det og teksten, slik vi ser på bildet her ved siden av, da barna så en sel ute på sjøen.

Barna undersøkte det de fant i fjæra enten alene eller sammen. Med en gang ett av barna fant noe spennende, ropte det på de andre barna og læreren for å vise hva det hadde funnet.

5. Hverdagssamtalen – må gi mulighet for kommunikasjon og refleksjon hos barnet

læreren måtte innrømme at hun ikke visste det heller. Barnas konklusjon ble at organismen var levende, men at det gjensto å finne hva den var.

<table>
<thead>
<tr>
<th>6. Det fysiske miljø former barnas lek og læring</th>
</tr>
</thead>
<tbody>
<tr>
<td>I fjæra kan man finne et stort biologisk mangfold. Da barna plukket skjell, la de merke til at noen skjell hadde rankeføttinger, og når barna undersøkte skjellene grundigere, så barna at det var mer som hadde festet seg på skjellene. Barna kjente allerede rankeføttingene fra en tidligere tur i fjæra, men ved å se på Greiningarlykla um smádýr kunne de se at dette var en butt strandsnegl, som er en sjøsnegl. Barna fant ut at det er flere levende organismer i fjæra enn de trodde i utgangspunktet, f.eks. rankeføttinger, tanglopper, tare, snegler, sel og kreps.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluering av prosjektet</th>
</tr>
</thead>
</table>
| Både barn og voksne hadde glede av prosjektet. Barna syntes prosjektet var interessant og spurt gengatte ganger når de skulle dra igjen. Et annet tegn på deres interesse var at i flere dager etter at prosjektet var avsluttet, fortsatte barna å bidra med ideer til historien om hvordan krepsen døde. Barna var nysgjerrige i om livet i fjære, men det hadde vært enda morsommere om vi også hadde funnet litt mer liv i fjæra.

Det er mulig å videreutvikle dette arbeidet som vi startet, bl.a. ved å bruke papirremene til å sortere dyr etter rekker. Det hadde også vært mulig å gå tilbake til fjæra og ”låne” organismer fra fjæra og observere dem over en periode i et akvarium. Det er også mulig å skrive ut bilder med informasjon om organismer som skjuler seg i fjæra. |
Lys

Mål: Vi vil undersøke hvordan barn spontant undersøker lysets fysiske egenskaper.

Bakgrunn: Barnehagebarn fra Lørensvingen barnehage i Oslo – alder 2 – 5 år

Materialer som trengs: Overheadprojektor, glassbolle, vann med oppvaskmiddel, ulike opake (lystette) gjenstander til skyggelek, gjennomsiktig farget plast (fargefilter).

Begreper som kan være i fokus: Lys, stråler, skygge, lyskilde, farger, former.

Skisse over forsøket: Barnehagelærer initierte og støttet leken ved å sette fram overheadprojektor i et mørkt rom og følge lekens utvikling.

Naturvitenskapelig innhold

Forskere arbeider for å forstå hva lys er, det inneholder mye energi, men en komplett forståelse av hva lys er har de ikke funnet ut av. Lys er blant annet fotoner, energi, bølgelengder og farger. I barnehagen kan vi legge et grunnlag for en dypere forståelse gjennom arbeid og lek rundt noen sider av tema lys.

Er det opplagt at det ikke finnes lys uten at det er en lyskilde? Hva er mørke? Det er ikke annet enn fravær av en lyskilde. Lek med lys og skygge kan gi erfaring om at lys kommer fra en lyskilde. En gammel overheadprojektor er en god lyskilde.

Case 1. Skyggelek

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Det fysiske miljø former barnets lek og læring</td>
<td>Barnet lærer i interaksjon mellom barn og voksne og barn imellom</td>
</tr>
</tbody>
</table>
Case 2. Fargelek med overhead

<table>
<thead>
<tr>
<th>Barnets perspektiv – pedagogen skal være nysgjerrig og ta vare på barnets nysgjerrighet</th>
<th>Barnets medvirkning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Det er spennende å legge mindre lystett materiale (fargefiltre) på overheaden, for eksempel gjennomsiktig farget plast. Barna erfarte at fargefiltre ga rommet nye farger. Gutt 4 år ba oss om å lukke øynene mens han la en ny farge på overheaden. «Lukk øynene alle sammen, ikke åpne dem før jeg sier ifra. Hvilken farge tror dere at det blir? Det er ikke lov å se, det er juks!»</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hverdagssamtalen – må gi mulighet for kommunikasjon og refleksjon hos barnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Det ble rødt! (Gutt 4 år) “Se, alt er bare rødt!” (Gutt 4,5 år) «Men se! Skyggen min er fortsatt der og den er fortsatt like stor som meg!»</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hverdagssamtalen – må gi mulighet for kommunikasjon og refleksjon hos barnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Jente 3 år) “Vi kan blande fargene!”. Barna forsøkte å legge både rødt, blått og grønt filter på overheaden for å se hva slags farger vi kunne skape. Det ble ifølge barna mørkebrunt. (Gutt 4 år) «Akkurat som når vi blander alle malefargene.»</td>
</tr>
<tr>
<td>Det fysiske miljø former barnets lek og læring</td>
</tr>
</tbody>
</table>
Sjunka och flyta

-hur är det möjligt att metall sjunker men också kan flyta?

Inledning

Syfte: Barnen skall få förståelse för vad som är avgörande för om metall kan flyta eller inte
Bakgrund: Barngruppen består av 8 barn i åldern 4-5 år. Barnen har tidigare erfarenhet av begreppen flyta och sjunka och har förhoppningsvis en grundläggande förståelse för fenomenet.
Material som behövs: vatten för testande av flytförmåga, lera, metall, klossar, annat material som flyter eller sjunker.
Begrepp som kan vara i fokus: flyta, sjunka, densitet, bärkraft, material, form.

Naturvetenskapligt innehåll

Kriterier för att saker flyter eller sjunker är beroende av dess densitet. Densitet eller volymmassa är ett mått av ett ämnes täthet, således massa per volymenhet. Ju högre densitet ett ämne har desto större är mängden massa per volymenhet, det vill säga att densiteten påverkar således direkt ämnets vikt.
Om föremålet har lägre densitet än vatten, blir lyftkraften så stor att föremålet flyter. Järn har en högre densitet än vatten, vilket innebär att järn sjunker i vatten. Eftersom järn har större densitet än vatten, kan det endast fås att flyta om formen anpassas så att föremålet exempelvis förvarar luft under omgärdande vätskeyta. I detta fall blir alltså densiteten ett medelvärde av järnets och luftens, vilket leder till att medeldensiteten för föremålet blir lägre än vattnets densitet och ett fartyg av järn kan flyta.

Pedagogiska principer

Dokumentation

Ta tillvara det som barnen kände till och arbeta utifrån det. "Men en riktigt stor båt är av järn, varför sjunker inte den?" ”Det vet du väl att den inte är av järn, den är av trä”
| Barn lär i interaktion mellan barn och vuxna | Läraren skulle inleda projektet för att senare fungera som en forskare tillsammans med baren. Ibland tar läraren initiativet för att komma vidare och ibland så lyssnar läraren in och stödjer där det behövs. Öppna frågor för att barnen skall få fundera och komma med förslag. “I somras åkte med en båt som man körde in bilen i” “Vår båt var större än din...” |
| **Den fysiska miljön formar barns lek och lärande** | Fri tillgång till det material som vi valt att använda oss av i denna uppgift. | Barn lekte och undersökte gärna lerans egenskaper vid olika tillfällen. Barnen blev också väldigt intresserade av lerans bärkraft och skapade modeller som klarade av att bära en hel del vikt. ”Se, jag har gjort en färja!” |
Vandets bevægelse

Didaktisk mål: Vi vil undersøge hvordan børn spontant undersøger vands fysiske bevægelse.
Naturfaglige mål: 1) Viden om hvordan vand bevæger sig. 2) Erfaringer med de naturvidenskabelige metoder, herunder konstruktioner – hvor udgangspunktet er undring og undersøgelse.
Baggrund: Pædagogers observation af at mange børn er optaget af at garve og konstruere vandbaner på legepladsen.
Nødvendige materialer: Tagrender (rännor/takrenner), holdere, spande og vand.

Fakta og begreber om ”Vandets bevægelse”
- Mængden af vand der hældes ud på banen har betydning for hastigheden af vandets bevægelse.
- Dæmning. Dæmning stopper eller hindrer vandets bevægelse.

Planlægning/indledning og kontekst

<table>
<thead>
<tr>
<th>Pædagogisk princip</th>
<th>Beskrivelse/narrativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generelt</td>
<td>Vi har aftalt at Jacob (som børnene stort set ikke kender) kommer forbi børnehaven med en masse tagrender (rännor/takrenner) som vi i fællesskab anvender til at undersøge vandets bevægelse.</td>
</tr>
<tr>
<td>Barnets perspektiv</td>
<td>Pædagogerne sætter rammerne ved at bringe tagrender (rännor/takrenner) på legepladsen for at der kan foregå undersøgende og eksperimenterende aktiviteter med vand – med udgangspunkt i barnets interesse og spørgsmål. Pædagogerernes intention er hele tiden at understøtte barnets nysgerrig og er opmærksomme på hvad der fanger barnets interesse for at afprøve.</td>
</tr>
<tr>
<td>Barnets medvirken</td>
<td>Pædagogerne tager udgangspunkt i børnenes individuelle interesser og læreprocesser. Pædagogerne støtter op om barnets eget initiativ til at lære noget, arbejde med noget og fordybe sig. Der er ingen restriktioner. Der er ingen instruktioner.</td>
</tr>
<tr>
<td>Pædagogens kundskab og evne til at improvisere</td>
<td>Pædagogerne har ingen færdige modeller der skal efterprøves. Det er pædagogernes opgave alene at understøtte børnene i deres eksperimenter og arbejde med at konstruere vandbaner.</td>
</tr>
</tbody>
</table>
Barnet lærer i interaktion mellem barn og voksne

Aktiviteterne er planlagt med 8 børn hvor de voksne har en tilbagetrukket rolle. Pædagogerne vurderer løbende hvornår og hvordan interaktionen støtter børnenes nysgerrighed.

Hverdagssamtalen

Når der er mulighed for det italesættet oplevelser via samtaler, refleksioner og dialog på baggrund af børnenes interesser og opmærksomhed. Der refereres til tidligere arbejde med vand og til tagrender på husene omkring os.

Det fysiske miljø former barnets leg og læring

Der stilles materialer til rådighed som børnene selv kan arbejde med uden direkte voksenstyring. Det er tagrender (rännor/takrenner), holdere, spande og vand.

Aktiviteter: Børn henter udstyr og de henter vand fra hanen og konstruerer vandbaner.

CASE: Vandets bevægelse

Børns perspektiv – pædagogen skal være nysgerrig og tage vare på barnets nysgerrighed

Børnene finder selv ud af at hældning (Lutningen/Skråningen) af banen har betydning for hvordan vandet bevæger sig.

Børnene finder selv ud af at mængden af vand der ledes gennem på en gang har betydning for vandets bevægelse.

Pædagogens kundskab og evne til at improvisere

|---|---|

Barnet lærer i interaktion mellem barn og voksne (med fokus på barnets nysgerrighed).

<table>
<thead>
<tr>
<th>V: hvor løber vandet hen når banen er fladt?</th>
<th>Billedes: her finder et barn på at lægge sand under ren den for at hæve/ nivellere vandbanen. Det overrasker pædagogen at børnene arbejder så godt sammen.</th>
</tr>
</thead>
</table>

Det fysiske miljø former barnets leg og læring.

Børn optaget af konstruktion. Et barn går i gang med at bygge baner op, flere børn iagttager og går selv i gang. Projektet er både individuelt og fælles. Da børnene let styrer materialer og konstruktion er det let for børnene at medvirke i egen læring. Det er let før børn af efterprøve tanker (hypoteser). Kompleksitet kan varieres af barnet selv.
Didaktiske refleksjoner

Målet med denne læringspakken er som nevnt å bidra til støtte for arbeidet med kompetanseheving innen naturvitenskap i barnehagen. Viktigheten av å starte med naturvitenskap allerede i barnehagen har vært i fokus i alle de nordiske landene, og de har alle planer for aktiviteten i barnehagen som innbefatter naturvitenskap (Heikkilä, Välimäki, & Ihalainen, 2005; Kunnskapsdepartementet, 2011; Mennta- og menningarmálaráðuneytið, 2011; Skolverket, 2010; Socialministeriet, 2004). Kvaliteten på barnehageaktiviteter er god mange steder (Broström & Frøkjær, 2015; Elfström, Nilsson, Sterner, & Wehner-Godée, 2014; Siry, 2014), likevel er det fortsatt barnehagelærere som tenker at det er nok å være i naturen for å lære naturvitenskap (Ejbye-Ernst, 2013). Det som kan være en begrensende faktor for barnehagelærere er tilgang på materiell der naturvitenskapen og pedagogikken inngår i en helhet og som gjør det mulig å sette i gang med aktiviteter uten for mye forberedelser. Med dette som utgangspunkt har vi utviklet en læringspakke som består av 10 ulike aktiviteter, 5 innen fysikk, 1 innen fysikk–kjemi og 4 innen biologi.

De seks pedagogiske prinsippene som er utviklet tidligere, viste seg å være gode tankeverktøy i forhold til hvordan en planlegger og gjennomfører naturvitenskapelige aktiviteter i barnehagen (Natgrep1 (Sortland et al., in press)). Det gir et helskapelig bilde av hvordan en kan arbeide, og der alle interaksjoner mellom barn og barn, barn og voksne, og barn-voksne og fysisk miljø rommer muligheter for naturvitenskap. Tabellen under viser hvordan prinsippene kan brukes til observasjons- og refleksjons-spørsmål i forbindelse med casene over, eller en annen naturvitenskaplig aktivitet i barnehagen.

Tabell 2: Didaktiske spørsmål relatert til de pedagogiske prinsippene som kan brukes som inspirasjon til observasjons- og refleksjons-spørsmål i forbindelse med et av casene over eller en annen naturvitenskaplig aktivitet i barnehagen.

<table>
<thead>
<tr>
<th>NatGreps prinsipper</th>
<th>Eksempler på observasjonsspørsmål: Det du vil være spesielt oppmerksom på</th>
<th>Dokumentasjon: Bilder, video, observasjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barns perspektiv – barnehagelæreren må være nysgjerrig i og ta vare på barns nysgjerrighet</td>
<td>Hva stiller barn spørsmål om? Hva underer de seg over og hva er de nysgjerrige på? Er barnas nysgjerrighet inspirert av det planlagte opplegget eller noe helt annet?</td>
<td></td>
</tr>
<tr>
<td>Barns medvirkning – barnets demokratisk rett til å medvirke til egen læring</td>
<td>Arbeider barna innenfor rammene av aktiviteten? Hva er barna opptatt av, oppslukt av, fordypet i? Er de aktive med noe konkret? Kan man se på et barn om det har lært noe?</td>
<td></td>
</tr>
<tr>
<td>Barnehagelærers kunnskap og evne til å improvisere</td>
<td>Hvor eksploisitt bruker pedagogen fagbegreper? Forstår barna pedagogens formidling? Svarer pedagogen på barnas spørsmål?</td>
<td></td>
</tr>
<tr>
<td>Barn lærer i interaksjoner med</td>
<td>Er det mulig å identifisere et vitenskapsmiljø skapt av barna, når de arbeider sammen?</td>
<td></td>
</tr>
</tbody>
</table>
| barn og voksne (med fokus på barns nysgjerrighet) | Hva lærer barn i sammen med andre barn?
Hvilken rolle har pedagogen?
Hva lærer barnet i samværet med den voksne personen? |
|---|---|
| Hverdagssamtalen – må gi mulighet for kommunikasjon og refleksjon hos barnet | Hva blir det snakket om barn/barn?
Hva bli det snakket om voksen/barn?
Er det samtaler om vitenskap/fagbegreper?
Reflekterer barn over vitenskapelige emner og egne erfaringer? |
| Det fysiske miljø former barnas lek og læring | Skaper materialene en ny oppmerksomhet?
Inspirerer materialene til en ny lek/aktivitet?
Inspirerer vitenskapsaktivitetene til barns senere lek/interesse?
På hvilken måte former det fysiske vitenskapsmiljøet barnas lek og læring? |

Videre tilbyr prinsippene et nyttig og læringsfremmende grunnlag for refleksjon for barnehagelærernes samarbeidspartnere som studenter og lærere ved utdanningsinstitusjonene. Det er vårt ønske at prinsippene kan bidra til et tettere samarbeid mellom utdanning og praksis, mellom yrket, emne og forskning ved at de skaper en felles plattform for samhandling (Sortland et al., in press).

Det er et stort fokus på læring i tabell 2. Læring i denne sammenhengen er ikke konkrete læringsmål og evaluering av disse, slik som i skolen. Læringen en ønsker å fremme er den som er på barnas premisser, der barna er til stede frivillig. Læringsaktivitetene/leken skal bidra til tilfredsstillelse av barnas nysgjerrighet (Heikkilä et al., 2005; Kunnskapsdepartementet, 2011; Mennta- og menningarmálaráðuneytið, 2011; Skolverket, 2010; Socialministeriet, 2004). Nye utfordringer for barna kan også bidra til at barnehagelærerne lærer mer. Barna stiller spørsmål som må sjekkes ut, de ser fenomener på en annen måte enn de voksne, og har uventede vinklinger på ting (Sortland et al., in press). Ved å bruke prinsippene aktivt, kan de bidra til at opplegg initiert av barnehagelærere kan bli barnas ved at deres perspektiv og medvirkning alltid er i fokus.
Referanser

Bildeliste

s. 6 (høyre): Nils-Jonny Sortland, Bremnes, Norway.

s. 7-10: Case: Pernille Hummelgaard Tonnesen, Børnehuset Gartneriet, Denmark.

s. 11-12: Haukur Arason, University of Iceland, Iceland.

s. 15-19: Gunlög Persson and Christoffer Salmen, Önnegårdens förskola, Sverige.

s. 21-22: Eva Staffans, Aabo Akademi, Finland

s. 23 (høyre): Merete Økland Sortland, Stord University College, Norway.

s. 25-26: Astrid Wallem Hagen, Bråtveit nature- and culture kindergarten, Norway.
s. 26 (at the bottom): Grethe Kvarven, Maurtua kindergarten, Norway.

s. 28-30: Jóna Rún Gísladóttir, Leikskólinn Hulduberg, Island.

s. 32-34: Guri Langholm and Kari Holter, Oslo and Akershus University College and Norwegian Centre for Science Education, Norway.

s. 36-37: Eva Staffans, Aabo Akademi, Finland

s. 39-40: Pernille Hummelgaard Tonnesen, Børnehuset Gartneriet, Denmark.